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Application of a generalised thermodynamic model to study of the ferroelectric properties of
DOBAMBC and DOBA-1-MPC

Abhilasha Singh and Shri Singh*

Department of Physics, Banaras Hindu University, Varanasi-221 005, India

(Received 11 January 2008; accepted 10 April 2008)

The temperature variations of tilt angle, spontaneous polarisation, helical pitch, Goldstone mode rotational
viscosity and twist elastic constant of the ferroelectric smectic C (SmC*) phase near the smectic A (SmA)–SmC*
transition of the ferroic mesogens DOBAMBC and DOBA-1-MPC were calculated using a thermodynamic
model based on an extended Landau expansion of the free-energy density. The model free-energy density of the
system is written in terms of order parameters (tilt vector j, polarisation P and wavevector q of helical pitch)
involving eleven mean-field coefficients including bilinear, biquadratic and flexoelectric couplings between j and
P and coefficients due to coupling between j and q. The values of these coefficients were determined by fitting the
results of calculation with the experimental data for the pitch, tilt angle and spontaneous polarisation. A detailed
analysis of the relative contribution of each individual term appearing in the free-energy density expansion is
presented. Taking these values of parameters, in addition to tilt angle, spontaneous polarisation and pitch, we
calculate the Goldstone mode rotational viscosity and twist elastic constant as a function of temperature. The
theoretical results agree well with the experimental data for both mesogens.

Keywords: thermodynamic model; ferroelectric liquid crystal

1. Introduction

Mesogenic materials exhibiting the helicoidal chiral

smectic C (SmC*) phase have been the subject of

considerable interest (1–6) in fields of condensed matter

physics and statistical mechanics and much effort has

been spent on investigating their behaviour from both

fundamental as well as potential application (7, 8)

viewpoints. Meyer et al. (9) were the first to establish the

existence and investigate the behaviour of the ferro-

electric SmC* phase in a mesogen, 4-n-decyloxybenzi-

lidene-49-amino-2-methylbutyl cinnamate (DOBAMBC).

Since then a range of experimental data for the tilt

angle, polarisation, helical pitch and other physical

properties have become available for DOBAMBC (10–

20), the related compound 4-n-decyloxybenzilidene-49-

amino-1-methylpropyl cinnamate (DOBA-1-MPC)

(18–21) and other mesogenic ferroic materials (22–30).

However, little is understood about the basic thermo-

dynamic functions of the SmC* phase and the proper-

ties of the smectic A (SmA)–SmC* phase transition.

Most theoretical attempts have been based on the

phenomenological Landau type expansion (31–36) of

the free-energy density near the SmA–SmC* transition.

The ferroelectric liquid crystals DOBAMBC and

DOBA-1-MPC exhibit the following cooling phase

sequences:

I 117 SmA 94:5 SmC � 63 SmIð Þ75 Cr DOBAMBCð Þ;

I 116 SmA 86:0 SmC � 61 SmIð Þ82 Cr DOBA�1�MPCð Þ,

where the numbers are transition temperatures in uC
and I and Cr represent, respectively, the isotropic

liquid and crystalline phases. Measurements of high-

resolution heat capacity, tilt angle (h0) and sponta-

neous polarisation (P0) were carried out near the

SmA–SmC* phase transition by Dumrongrattana

et al. (12). They measured h0 and P0 almost

simultaneously using an electro-optical technique

and the measurement of displacement current

through the field-reversal method, respectively, and

found that the ratio P0/h0 stays fairly constant for

Tc2T.2 K and drops precipitously near the transi-

tion temperature Tc. An alternative method, based on

the dielectric measurements on thick samples, was

used by Levstik et al. (21) to study the temperature

dependence of the tilt angle, spontaneous polarisa-

tion, helical pitch, Goldstone mode rotational visc-

osity and twist elastic constant of DOBAMBC and

DOBA-1-MPC. We have used the experimental

results of these authors (21) in this work.

The temperature variations of the tilt angle,

polarisation and their ratio and pitch in

DOBAMBC were investigated by Huang and

Dumrongrattana (32) using the generalised mean-

field model, which is similar to that proposed by Zeks

(33). They determined the model parameters by

fitting to the experimental data (12) and found that

the values of the tilt angle, spontaneous polarisation

and their ratio are described well by the model, but
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the fitting to the helical pitch was less satisfactory. In

the case of DOBA-1-MPC there is so far, as known to

us, no systematic theoretical study to describe the

characteristic features of SmA–SmC* transition

properties. The purpose of the present work is to

provide, using the generalised Landau mean-field
model, a comprehensive description of the tempera-

ture variations of the tilt angle, spontaneous polar-

isation, helical pitch, heat capacity, Goldstone mode

rotational viscosity and twist elastic constant in the

SmC* phase near the SmA–SmC* transition in

DOBAMBC and DOBA-1- MPC. It is pertinent to

mention here that our theoretical results of the heat

capacity, tilt angle and spontaneous polarisation for

the DOBAMBC are in good agreement with experi-

ment (21) and similar to the results of Huang and

Dumrongrattana (32). These authors (32) obtained a

qualitative agreement for the temperature variation

of the pitch of DOBAMBC with experimental data

(10, 11), but we obtain a close agreement with other

experimental data (21). Our results for Goldstone

mode rotational viscosity and twist elastic constant of

DOBAMBC and all the results for DOBA-1-MPC

are new and agree very well with experiment (21). The

paper is organised as follows. In section 2, we

describe, in brief, the thermodynamic model used
here and obtain the equations for the equilibrium

values of pitch, tilt angle and spontaneous polarisa-

tion. The numerical calculations and results are given

in section 3. The paper ends with a summary and

conclusion together with the possible outlook in

section 4.

2. Theoretical framework and working equations

The present work is based on an extended thermo-
dynamic model of the SmC* phase near the SmA–

SmC* transition in which the free-energy density is

written as an expansion in terms of order parameters.

A full review on this model is given elsewhere (34).

However, for the sake of completeness, we present

here a brief summary.

A brief description of the generalised mean-field model

The theoretical description of the SmA–SmC* phase

transition is based on the introduction of two-

component order parameters related with the tilt

vector, j5(j1, j2) and in-plane polarisation, P5(Px,

Py) (34–36). In the SmC* phase the tilt of the director

vector n̂ from the normal to the smectic layers

processes helically as one goes from one smectic layer

to the another. The projection of n̂ into the plane of a

smectic layer is described by the primary order

parameter (tilt vector) j25j1x̂+j2ŷ. Because of the

chirality of the molecules the tilt breaks the axial

symmetry around the molecular axis and induces a

transverse in-plane polarisation (secondary order para-

meter) P5Pxx̂+Pyŷ perpendicular to n̂. Figure 1 defines

the order parameters j and P. The smectic planes are

assumed to be parallel to the xy plane and the

modulation of the system is along the z-axis.

The free-energy density of a SmC* phase in the

vicinity of the SmA–SmC* transition is written (34–

36) as an expansion in terms of order parameters j
and P:

g0 zð Þ~ 1

2
a j2

1zj2
2

� �
z

1

4
b j2

1zj2
2

� �2
z

1

6
c j2

1zj2
2

� �3

{L j1

dj2

dz
{j2

dj1

dz

� �
z

1

2
K3

dj1

dz

� �2

z
dj2

dz

� �2
" #

z
1

2x
P2

xzP2
y

� �
zZ Pxj2{Pyj1

� �

{f Px dj1=dzzPy dj2

	
dz


 �

{
1

2
e Pxj2{Pyj1

� �2
z

1

4
g P2

xzP2
y

� �2

{d j2
1zj2

2

� �
j1 dj2=dz{j2 dj1=dzð Þ:

ð1Þ

Only the coefficient a of the term quadratic in tilt is

assumed to be temperature dependent and goes to

zero at the ‘unrenormalised’ transition temperature

T0 for a ferroelectric liquid crystal (FLC), i.e.

a5a0(T2T0). All the other coefficients are taken to

be temperature independent. x is the generalised

susceptibility, K3 is the elastic modulus, L is the

coefficient of the Lifshitz invariant term responsible

for the helical structure, f and Z are the coefficients of

the flexo- and piezoelectric bilinear coupling between

the tilt and the polarisation, respectively. e is the

coefficient of the biquadratic coupling term inducing

transverse quadrupole ordering and the g term has

been included for the stability of the system. The d

Figure 1. Introduction of the order parameters j and P.
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term describes the monotonic increase of the pitch

with temperature at low temperature. The first two

terms (with coefficients a and b) in Equation (1) are

the usual quadratic and fourth-order terms in the tilt,

which appear in the free-energy density expansion of

a system close to a second-order phase transition. For

physical reasons, the parameters a, b, c, K3, x and g

can be assumed to be positive, whereas the sign of L,

f, Z, e and d can be permitted to assume both positive

and negative values.

Equation (1) was first introduced by Zeks (33),

except for the six-order term in the tilt, which was

independently introduced by Huang and Viner (37)

and by Carlsson and Dahl (38). We can obtain the

‘‘classical’’ Landau model (31) for the free-energy

density from Equation (1) by putting the terms with

parameters c, e, g and d equal to zero. The most

important characteristic feature of the generalised

mean-field model, in contrast to the classical one, is

the presence of the biquadratic coupling (the e term)

between the tilt and polarisation. This term, first

introduced by Zeks (33), describes the fact that the

tilt induces a transverse quadrupole moment in chiral

as well as achiral SmC phases, and its inclusion in

Equation (1) is essential in order to describe correctly

the anomalous thermodynamic properties of FLCs

(temperature dependence of helical pitch, dielectric

susceptibility, critical electric field for the unwinding

of pitch, etc.).

As the tilt is small near the SmA–SmC* transi-

tion, we can assume |j|5sin h0<h0 (tilt angle). The

polarisation is always mutually perpendicular to both

j and ẑ. For a given j and ẑ, P can assume two

possible directions. When j, P and ẑ form a right-

handed coordinate system, the compound is said to

be a (+) substance and if they form a left-handed

system we have a (2) substance. Defining the

wavevector of pitch q52p/p we assume for the order

parameters

j1~h0 cos qzð Þ, j2~h0 sin qzð Þ,
Px~{P0 sin qzð Þ, Py~P0 cos qzð Þ,

ð2Þ

where h0 and P0 are the magnitudes of the tilt angle

and the spontaneous polarisation, respectively.

Substituting Equation (2) into Equation (1), we

obtain the expression for the Gibbs-free energy

density of the SmC* phase in the vicinity of SmA–

SmC* transition (33, 34)

g0 zð Þ~ 1

2
ah2

0z
1

4
bh4

0z
1

6
ch6

0{Lqh2
0z

1

2
K3q2h2

0z
1

2x
P2

0

{ZP0h0{fqP0h0{
1

2
eP2

0h2
0z

1

4
gP4

0{dqh4
0:

ð3Þ

The equilibrium values of h0, P0 and q are determined

from the condition that g0 should be a minimum with

respect to all these variables.

Equations governing pitch, tilt and polarisation

We derive the equations governing the pitch, tilt

angle and polarisation of an unperturbed SmC*

phase by minimising Equation (3) with respect to q, h0

and P0, respectively. For q, we obtain

q~
1

K3
Lzdh2

0zfP0=h0

� �
: ð4Þ

Thus the pitch is a function of the tilt and the

polarisation. We obtain the tilt equation by minimis-

ing Equation (3) with respect to h0,

ch5
0z b{4 dqð Þh3

0z a{2LqzK3q2{eP2
0

� �
h0{

Zzfqð ÞP0~0: ð5Þ

Minimisation of Equation (3) with respect to P0 gives

the polarisation equation

gP3
0z 1=x{eh2

0

� �
P0{ Zzfqð Þh0~0: ð6Þ

Substituting for q [Equation (4)] in Equation (3), g0(z)

can be written in terms of only h0 and P0

g0 zð Þ~ 1

2
a2 T{T0ð Þ{L2

	
K3

� �
h2

0z
1

4
a4h4

0z
1

6
a6h6

0

z
1

2
aP2

0z
1

4
gP4

0{bP0h0{c0P0h3
0{

1

2
eP2

0h2
0,

ð7Þ

where the new Landau coefficients are defined as

a2~a0

a4~b{4Ld=K3

a6~c{3d2
	

K3

a~1=x{f 2
	

K3

b~ZzLf =K3

and

c0~df =K3: ð8Þ

Minimising Equation (7) with respect to h0 and P0,

the tilt angle and polarisation equations are obtained

as

a6h5
0za4h3

0{3c0P0h2
0z a2 T{T0ð Þ{L2

	
K3{eP2

0


 �
h0

{bP0~0 ð9Þ
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and

gP3
0z a{eh2

0

� �
P0{bh0{c0h3

0~0: ð10Þ

An expression for the SmA–SmC* transition tempera-

ture Tc can be obtained from the fact that at the transi-

tion both P0 and h0 tend to vanish such that the ratio

P0/h0 remains finite. In this limit, Equation (9) reads

a2 Tc{T0ð Þ{L2
	

K3{b
P0

h0

� �����
T?Tc

~0: ð11Þ

Taking the limit TRTc in Equation (10), we obtain

a
P0

h0

� �����
T?Tc

{b~0: ð12Þ

Thus, the ratio P0/h0 at the phase transition is given by

limT?Tc

P0

h0

� �
~b=a: ð13Þ

Substitution of Equation (13) into Equation (11) gives

Tc~T0z
1

a2

L2

K3
z

b2

a

" #

: ð14Þ

This shows that the SmA–SmC* transition temperature

is slightly shifted for the SmC* phase in comparison

with its racemic mixture.

Influence of electric field: Goldstone mode rotational
viscosity and twist elastic constant of the SmC* phase

In an undistorted SmC* phase, the direction of

polarisation P spirals around the smectic layer

normal ẑ because of the helical variation of the tilt

direction and the net polarisation is zero. When an

electric field of magnitude E is applied parallel to the

smectic layers, it deforms the helix in such a way that

an average macroscopic polarisation <Pi> is induced.

The dielectric susceptibility x is then defined as

x vð Þ~limE?0
SPiT

E
: ð15Þ

The applied field deforms the helix in two ways;

changing the magnitude as well as direction of the tilt.

Both the amplitude and the phase of the order

parameters j and P will be influenced by the field so

that the sinusoidal ansatz of Equation (2) will no longer

be valid. Denoting the amplitude changes by dh1 and

dP1 and phase changes by dh2 and dP2, respectively, one

can write the following ansatz for the order parameters

in the presence of an electric field (34, 35)

j1~h0 cos qzð Þzdh1 cos qzð Þ{dh2 sin qzð Þ,

j2~h0 sin qzð Þzdh1 sin qzð Þzdh2 cos qzð Þ,

Px~{P0 sin qzð Þ{dP1 sin qzð Þ{dP2 cos qzð Þ,

Py~P0 cos qzð ÞzdP1 cos qzð Þ{dP2 sin qzð Þ:

ð16Þ

Thus, the dielectric response has been divided into two

modes, one which is due to amplitude changes (soft

mode) and another which is due to phase changes

(Goldstone mode) of the order parameters. This

division, however, is not clear-cut because of a small

amplitude-phase coupling. The amplitude-phase cou-

pling is so small that to a good approximation the two

modes can be defined as

x1~limE?0
SPi1T

E
, soft modeð Þ ð17Þ

x2~limE?0
SPi2T

E
, Goldstone modeð Þ ð18Þ

where <Pi1> and <Pi2> are the averages of the

amplitude part and the phase part of the induced

polarisation, respectively.

We assume that the electric field is applied

parallel to the smectic layers and that the electric

field has a time dependence E5E0 exp(jvt)x̂.

Substituting ansatz (16) into Equation (1), the free-

energy density can be written as

g zð Þ~g0 zð Þzg2 zð ÞzgE zð Þ, ð19Þ

where g0(z) is given by the Equation (1), g2(z) is the

extra contribution due to the changes of the order

parameters and gE(z) is the contribution due to the

electric field. Retaining terms quadratic in dh and dP,

we obtain

g2 zð Þ~dh2
1

1

2
az

3

2
bh2

0z
5

2
ch4

0{Lqz
1

2
K3q2

�

{
1

2
eP2

0{6 dqh2
0

�
zdh2

2

1

2
az

1

2
bh2

0z
1

2
ch4

0{Lq

�

z
1

2
K3q2{2 dqh2

0

�
zdP2

1

1

2x
{

1

2
eh2

0z
3

2
gP2

0

� �

zdP2
2

1

2x
z

1

2
gP2

0

� �
{dh1dP1 fqzZz2eP0h0ð Þ

{dh2dP2 fqzZzeP0h0ð Þzdh1dh02 {LzK3q{3 dh2
0

� �

zdh01dh2 L{K3qzdh2
0

� �
z

1

2
K3 dh0

2
1zdh0

2
2

� �

zf dP2dh01{dP1dh02ð Þ

ð20Þ
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and

gE zð Þ~{E:P

~E0 P0 sin qzð ÞzdP1 sin qzð ÞzdP2 cos qzð Þð Þ

exp jvtð Þ:

ð21Þ

Here, a prime denotes a derivative with respect to the

z-coordinate. In the limit of small electric field, the

space variation of dh and dP can be written as (35)

dh1~dh10 sin qzð Þexp jvtð Þ,

dh2~dh20 cos qzð Þexp jvtð Þ,
ð22Þ

dP1~dP10 sin qzð Þexp jvtð Þ,

dP2~dP20 cos qzð Þexp jvtð Þ:
ð23Þ

Applying the Euler–Lagrange equations to the g2(z)

and gE(z) terms, the following equations governing

the changes of order parameters in the static limit

(v50) are obtained

b1dh10zb2dh20zb3dP10zb4dP20~0, ð24Þ

b2dh10zb5dh20zb4dP10zb6dP20~0, ð25Þ

b3dh10zb4dh20{b7dP10~E0 ð26Þ

b4dh10zb6dh20{b8dP20~E0 ð27Þ

where

b1~{a{3bh2
0{5ch4

0z2Lq{2K3q2zeP2
0z12 dqh2

0,

b2~{2Lqz2q2K3{4 dqh2
0,

b3~fqzZz2eP0h0,

b4~{fq,

b5~{a{bh2
0{ch4

0z2Lq{2K3q2z4 dqh2
0,

b6~fqzZzeP0h0,

b7~
1

x
{eh2

0z3gP2
0,

b8~
1

x
zgP2

0:

In the case of the dielectric response at finite v, the

dynamic equations have to be formulated as a set of

balanced torque equations,

CelasticzCviscous~0: ð28Þ

Equations (26) and (27) represent the elastic torque

Celastic. The time derivatives of the order parameters

give the viscous torque

Cviscous~{cd h1

:

~{jvcdh10 sin qzð Þexp jvtð Þ:

Now, adding the terms of the type 2jvcdh10 to

Equations (24)–(27) gives the dynamic equations of

the system

b1{jvcSð Þdh10zb2dh20zb3dP10zb4dP20~0, ð29Þ

b2dh10z b5{jvcGð Þdh20zb4dP10zb6dP20~0, ð30Þ

b3dh10zb4dh20{ b7zjvcPSð ÞdP10~E0, ð31Þ

b4dh10zb6dh20{ b8zjvcPGð ÞdP20~E0: ð32Þ

These equations contain four different viscosities: cS,

cG, cPS and cPG. cS and cG correspond to the director

orientations, whereas remaining two, cPS and cPG,

connected with the polarisation modes are due to the

rotation of the molecules around their long axis. Near

Tc it is expected (36) that cS5cG. The director modes

are of much lower frequency than the polarisation

modes. So the eigenfrequencies of the polarisation

modes can be assumed to be infinite, i.e. cPS and cPG

can be taken to be zero in Equations (31) and (32).

Substituting for dP10 and dP20 into Equations (29)

and (30) and diagonalising the resulting equations, we

obtain (39) the equation determining the eigenfre-

quencies of the director modes of the system

XzjvcSð Þ YzjvcGð Þ~0, ð33Þ

where

X~{b1{
b2

4

b8
{

b2
3

b7

and

Y~q2 K3{
f 2

1
x {eh2

0z3gP2
0

 !" #

~q2 eKK3,

where eKK3~K3{f 2
	

1=x{eh2
0z3gP2

0

� �
is the renor-

malised elastic constant. The eigenfrequencies of the

soft mode and the Goldstone mode can be obtained,
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respectively, as

XzjvcS~X 1zjvtsð Þ

and

YzjvcG~Y 1zjvtGð Þ:

The corresponding eigenfrequencies are given as

fS~1=2ptS~
X

2pcS

ð34Þ

and

fG~1=2ptG~
Y

2pcG

~
q2 eKK3

2pcG

: ð35Þ

Assuming that the dielectric susceptibility corre-

sponding to Goldstone mode can be written as

x2~[0D[G= 1zjvtGð Þ,

where g0 is the permittivity of the free space and

DgG is the dielectric constant. We can write the

Goldstone mode dielectric strength as

[0D[G~
1

2eKK3

P0

qh0

� �2

: ð36Þ

Multiplying the relaxation frequency with the dielec-

tric strength of the Goldstone mode we obtain

expression for the Goldstone mode rotational visc-

osity

cG~
1

4p[0

� �
P2

0

h2
0D[GfG

 !

: ð37Þ

Using the known values of P0, h0, p, fG and DgG, the

cG and K3 can be determined from Equations (37) and

(36), respectively.

3. Numerical calculations and results

Out of the two rotational viscosities (cS and cG) the cG

is the one that controls the switching time in an

electro-optical device. The cG is usually measured

using thick samples by optical switching–time mea-

surements (40, 41) or by the polarisation reversal

current technique (41, 42). As mentioned in section 1,

Levstik et al. (21) measured the temperature depen-

dence of the spontaneous polarisation, tilt angle and

pitch and the frequency and temperature variations

of the complex dielectric constant of DOBAMBC

and DOBA-1-MPC. The tilt angle was measured by the

conventional crossed polariser method at a constant

field, whereas the spontaneous polarisation was deter-

mined simultaneously with a Sawyer–Tower bridge at

70 Hz. Both of these methods are dynamic, but allow

the determination of static quantities P0 and h0. The P0

was determined by extrapolating the saturated part of

the hysteresis loop to zero-field. The helical pitch was

determined by the use of a polarising microscope. From

the data of the complex dielectric constant the

temperature variation of the dielectric strength DgG

of the Goldstone mode and the corresponding relaxa-

tion frequency fG were determined. Using the data of

P0, h0, p, DgG and fG, they (21) obtained the cG and K3.

The K3 was found to be approximately temperature

independent except for Tc2T(1.5 K. The dielectric

method has the advantage that only small oscillations

of the director are excited.

For the numerical calculations, we require values

of 11 mean-field coefficients. We have determined

these coefficients for DOBAMBC and DOBA-1-

MPC by carrying out the least square fittings to the

experimental data (21) of p, P0, h0 and P0/h0. The

values of the coefficients are listed in Table 1.

For the DOBAMBC we have also listed the

values as obtained by Huang and Dumrongrattana

(12) and Carlsson et al. (34). The difference in sign in

some of the parameters is due to the fact that in

Carlsson et al. (34) the model predicts q (wavevector)

to change sign at some temperatures, describing a

transformation from a right handed (RH) to a left

handed (LH) type of helix. The parameters as

obtained by us and by Huang and Dumrongrattana

(12) correspond to the RH (+) variant of

DOBAMBC.

We have obtained three coefficients, L, d and f, by

fitting to the experimental data of the temperature

variation of the helical pitch [Equation (4)]. For

DOBAMBC we obtain the values of a2, a4 and a6

by fitting to the heat capacity data; the values of these

constants are almost the same as those of Huang and

Dumrongrattana (12). Taking these values of the

parameters, L, d, f, a2, a4 and a6, the remaining

coefficients (x, K3, e, g and Z) have been obtained by

fitting to the experimental data of P0 and h0. In case

of DOBA-1-MPC we fixed the values of L, d and f

from the pitch data and determined the values of

remaining eight coefficients to the best fit to the

temperature dependence of h0 and P0. Taking these

values of parameters we have calculated the values of

P0, h0 and p as a function of temperature by solving

simultaneously Equations (4)–(6). We find that the

theoretical and experimental values of P0 and h0 are

in very good agreement for both the mesogens over

the entire temperature region. However, near the
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peak of the helical pitch the theoretical result is about

5% above the measured data. As the value of Tc2T

increases the theoretical and experimental results

differ slightly by about 3%. With these values of P0,

h0 and p and the measured data of DgG and fG we

obtained the values of K3 and cG from Equations (36)

and (37). The theoretical results are compared with

the experimental data (see Figures 2–7).

In order to analyse the relative importance of each

individual term of the generalised mean-field model,

we evaluated the contribution of each term to the

total free energy density at three values of

Tc2T51.0 K, 5.0 K and 10.0 K; the results are given

in Tables 2 and 3 for DOBAMBC and DOBA-1-

MPC, respectively.

It is obvious from these tables that the first three

terms involving coefficients a2, a4 and a6 are the

dominant ones in the expansion of the free-energy

density. At each temperature the magnitudes of these

terms decrease showing a convergence of the expan-

sion series. The relative significance of the P4
0 and

P2
0h2

0 terms as compared to the terms P2
0, q h2

0, q P0h0

and q2h2
0 can obviously be seen. Further, in the

vicinity of the SmA–SmC* transition both the

bilinear coupling and the biquadratic coupling terms

determine the properties of the system. As the

Table 1. Values of the Landau coefficients of the generalized mean-field model.

Landau parameters Units

Compounds

DOBAMBC

DOBA-1-MPCThis work Ref. (12) Ref. (34)

a2 J m23 K21 4.526104 4.526104 3.506104 4.056105

a4 J m23 5.256105 5.256105 8.006105 6.026106

a6 J m23 8.836106 8.836106 9.006106 4.106106

x 10211 F m21 2.60 2.60 2.70 1.98

K3 10212 N 2.50 2.50 3.40 2.70

L 1025 J m22 2.35 2.30 21.40 1.20

d 1025 J m22 2.48 2.50 27.00 2.05

f V 20.23 20.22 20.21 20.30

e 1011 J m C22 5.66 5.70 9.40 1.70

g 1019 J m5 C24 3.82 3.80 2.20 5.70

Z 106 V m21 2.78 2.80 241.00 3.05

Tc K 367.5 367.6 – 359.0

Figure 2. Comparison of the theoretical results (solid lines)
with the experimental data (21) (denoted by filled circles for
P0 and filled triangles for h0) of the temperature variation
of P0 and h0 for DOBAMBC.

Figure 3. Comparison of the theoretical results with the
experimental data (21) of the temperature variation of P0

and h0 for DOBA-1-MPC. The symbols are same as those
of Figure 2.
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temperature decreases these coupling terms (invol-

ving Z and e coefficients) become more significant.

The contribution of the Lifshitz invariant term

(involving L) that is responsible for the helical pitch

is small as compared to the terms involving tilt,

polarisation and coupling between the tilt and

polarisation but is still very significant as compared

to the other remaining terms. As shown elsewhere

(37, 43) in order to explain the SmA–SmC* transition

properties a h6
0 term is required. A comparison

between Tables 2 and 3 shows that at each tempera-

ture the effect of the terms involving P2
0, P4

0, P0h0 and

P2
0h2

0 is more significant in case of DOBA-1-MPC as

compared to DOBAMBC. However, q h2
0, q2h2

0 and

q h4
0 terms contribute slightly more in case of

DOBAMBC.

The temperature dependence of the polarisation,

tilt angle and pitch are shown in Figures 2–5 for both

mesogens. It can be seen that the theoretical results

agree very well with the experimental data including

the helical pitch. The anomalous behaviour of the

pitch with temperature is found; at low temperature it

slowly increases with increasing temperature, reach-

ing a maximum at approximately 1 K below Tc, and

then slowly decreases to a finite value at Tc. The

behaviour of p as a function of h0 is such that p starts

from a finite value at Tc, decreases towards a

minimum approximately 1 K below Tc and then

slowly increases with increasing the value of h0. In

Figure 4. The temperature variation of helical pitch for
DOBAMBC. Solid lines and filled circles represent,
respectively, the theoretical results and the experimental
data (21).

Figure 5. The temperature variation of helical pitch for
DOBA-1-MPC (21). The symbols are same as those of
Figure 4.

Figure 6. The temperature variation of Goldstone mode
rotational viscosity cG for DOBAMBC [experimental data
(21) filled triangles; theoretical result solid line] and DOBA-
1-MPC [experimental data (21) filled circles and theoretical
result solid line].

Figure 7. The temperature variation of the twist elastic
constant K3 for DOBAMBC and DOBA-1-MPC (21). The
symbols are same as those of Figure 6.
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fact, the anomaly in p is found to be closely related to

the anomaly in the ratio P0/h0.

In Figure 6 we compare the theoretical results for

the temperature variation of the Goldstone mode

rotational viscosity, cG, with the experimental (21)

values for DOBAMBC and DOBA-1-MPC.

For both systems, the results for the twist elastic

constant K3 are plotted in Figure 7. In the numerical

calculations of these quantities the theoretical values

for the p, P0 and h0 have been used. We found that

the results of our calculations are in good agreement

with the experimental data. In accordance with the

experimental findings, we find in our calculations a

bump near Tc in the curves of cG and K3. It is believed

(21) that the existence of bump is mainly related to

the difficulties of determining the maximum of the

Goldstone mode, dielectric strength DgG accurately.

4. Summary and conclusion

A generalised (extended) mean-field model for the

thermodynamic and phase transition properties of

ferroelectric liquid crystals has been used to calculate

the temperature variations of the tilt angle, sponta-

neous polarisation, helical pitch, Goldstone mode

rotational viscosity and twist elastic constant in the

SmC* phase near the SmA–SmC* transition in

ferroic mesogens DOBAMBC and DOBA-1-MPC.

The basis of the model is the Landau expansion of

the free-energy density given by Equation (3). This

expansion introduces 11 material parameters into

the problem. In order to determine a complete set of

these parameters we have adopted the usual proce-

dure. For both the materials, we have determined the

values of the coefficients L, d and f by the best fit to

the experimental data of the helical pitch. In case of

DOBAMBC we get the values of a2, a4 and a6 by

fitting to the heat capacity data. Taking these values

of the parameters L, d, f, a2, a4 and a6, the remaining

coefficients (x, K3, e, g and Z) have been obtained by

fitting to the experimental data of P0 and h0. For

DOBA-1-MPC, we determined the values of the

coefficients a2, a4, a6, x, K3, e, g and Z from the best

fit to the temperature dependence of h0 and P0. Using

these coefficients, we have evaluated the values of the

spontaneous polarisation, tilt angle, pitch, Goldstone

mode rotational viscosity and the twist elastic

constant as a function of temperature. We have

also analysed the relative importance of each

individual term of the free-energy density expansion

[Equation (3)] by evaluating the respective contribu-

tions at three temperatures Tc2T51.0 K, 5.0 K and

10 K for both mesogens. We have found that

inclusion of terms involving h6
0, P2

0, P4
0, P0h0, P2

0h2
0

and q h2
0 in the expansion is essential to explain the

characteristic features of the SmC* phase near the

SmA–SmC* transition.

We have compared the theoretical results with the

experimental values and found a close agreement. In

conclusion, using the generalised mean-field model

we have been successful in explaining the character-

istic features of the SmC* phase near the SmA–SmC*

transition in the ferroic mesogens DOBAMBC and

DOBA-1-MPC. However, we would like to empha-

sise that an answer at the microscopic level must be

found to the question why the higher order terms are

Table 2. The magnitude of each individual term (in unit of
J m23) of the generalised mean-field model [Equation (3)]
and of P0, h0 and q at three values of Tc2T for
DOBAMBC.

Tc2T

1.0 K 5.0 K 10.0 K

1
2

a2 Tc{Tð Þh2
0

0.136104 1.116104 3.336104

1
4

a4h4
0

0.0446104 0.1286104 0.2856104

1
6

a6h6
0

0.0026104 0.1416104 0.0696104

1
2x P2

0
5.6 23.55 34.7

1
4
gP4

0
0.798 14.33 31.2

ZP0h0 11.3 30.56 45.3
1
2

eP2
0h2

0
4.7 34.18 75.0

L q h2
0

2.833 6.772 10.88

1
2

K3q2h2
0

0.333 1.052 1.817

d q h4
0

0.173 0.705 1.690

f q P0 h0 1.971 7.383 11.786

P0/mC m22 17.0 35.0 42.5

h0/rad 0.24 0.314 0.384

q/m21 2.106106 2.926106 3.146106

Table 3. The magnitude of each individual term (in unit of
J m23) of the generalised mean-field model [Equation (3)]
and of P0, h0 and q at three values of Tc2T for DOBA-1-
MPC.

Tc2T

1.0 K 5.0 K 10.0 K

1
2

a2 Tc{Tð Þh2
0

0.756104 6.946104 24.666104

1
4

a4h4
0

0.2156104 0.7076104 2.236104

1
6

a6h6
0

0.0016104 0.0226104 0.0156104

1
2x P2

0
1.4586102 6.4646102 9.216102

1
4
gP4

0
4.7546102 9.3386103 18.966103

ZP0h0 0.4456102 1.2786102 2.0336102

1
2 eP2

0h2
0

0.1816102 1.4926102 3.7776102

L q h2
0

1.110 2.955 4.590

1
2

K3 q2h2
0

8.437 1.193 1.621

d q h4
0

0.069 0.346 0.955

f q P0 h0 10.994 45.140 62.790

P0/mC m22 76.0 160.0 191.0

h0/rad 0.192 0.262 0.349

q/m21 2.506106 3.596106 3.146106
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so important in determining the properties of SmC*

phase near the SmA–SmC* transition.
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